
Audit Report

Loop v2 Staking Contract

v0.5

December 14, 2021

1



Table of Contents
Table of Contents 2

License 3

Disclaimer 3

Introduction 5
Purpose of this Report 5

Codebase Submitted for the Audit 5

Methodology 6

Functionality Overview 6

How to read this Report 7

Summary of Findings 8
Code Quality Criteria 9

Detailed Findings 10
Transferable reward tokens may block token owner from unstaking and claiming
rewards 10

Rewards are lost if user does not claim them during unstake 10

Partial reward calculation in staking contract leads to loss of rewards 11

Users can steal all rewards from the staking contract with very little cost 11

Reward distribution in staking contract may run out of gas and be blocked forever 12

User reward query of staking contract returns wrong pending reward amount 12

Native tokens support is partially implemented, which could cause inconsistent state
and failures 12

Treating LUNA as a special case for tax calculation may lead to problems with Terra
protocol updates 13

The owner key being comprised may result in funds locked forever 13

Canonical address transformations are inefficient 14

Storing unused data is inefficient 14

Storing duplicated data is inefficient 14

Use of magic numbers can be error-prone 15

Overflow checks not enabled for release profile in
contracts/loopswap_staking/Cargo.toml 15

2



License

THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NODERIVATIVES
4.0 INTERNATIONAL LICENSE.

3

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/


Disclaimer
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS
AND WARRANTIES OF ANY KIND.

THE AUTHOR AND HIS EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING OUT
OF, OR IN CONNECTION WITH, THIS AUDIT REPORT.

COPYRIGHT OF THIS REPORT REMAINS WITH THE AUTHOR.

This audit has been performed by

Oak Security

https://oaksecurity.io/
info@oaksecurity.io

4

https://oaksecurity.io/
mailto:info@oaksecurity.io


Introduction

Purpose of this Report

Oak Security has been engaged by Loop Blockchain Pty Ltd to perform a security audit of the
Loop staking smart contract.

The objectives of the audit are as follows:

1. Determine the correct functioning of the protocol, in accordance with the project
specification.

2. Determine possible vulnerabilities, which could be exploited by an attacker.

3. Determine smart contract bugs, which might lead to unexpected behavior.

4. Analyze whether best practices have been applied during development.

5. Make recommendations to improve code safety and readability.

This report represents a summary of the findings.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage (see disclaimer).

Codebase Submitted for the Audit
The audit has been performed on the following GitHub repository:

https://github.com/Loop-Protocol/Loop_protocol_col5

Commit hash: 0f902abc1981be446445427d1fe2a75a2f28e161

This audit only covers the staking contracts in the following directory:

● contracts/loopswap_staking

As well as imported code from:

● packages

5

https://github.com/Loop-Protocol/Loop_protocol_col5


Methodology
The audit has been performed in the following steps:

1. Gaining an understanding of the code base’s intended purpose by reading the
available documentation.

2. Automated source code and dependency analysis.
3. Manual line by line analysis of the source code for security vulnerabilities and use of

best practice guidelines, including but not limited to:
a. Race condition analysis
b. Under-/overflow issues
c. Key management vulnerabilities

4. Report preparation

Functionality Overview
The submitted contracts implement the staking functionality of Loop Protocol, a DEX built on
the Terra blockchain.

6



How to read this Report
This report classifies the issues found into the following severity categories:

Severity Description

Critical A serious and exploitable vulnerability that can lead to loss of funds,
unrecoverable locked funds, or catastrophic denial of service.

Major A vulnerability or bug that can affect the correct functioning of the
system, lead to incorrect states or denial of service.

Minor A violation of common best practices or incorrect usage of primitives,
which may not currently have a major impact on security, but may do so
in the future or introduce inefficiencies.

Informational Comments and recommendations of design decisions or potential
optimizations, that are not relevant to security. Their application may
improve aspects, such as user experience or readability, but is not strictly
necessary. This category may also include opinionated
recommendations that the project team might not share.

The status of an issue can be one of the following: Pending, Acknowledged or Resolved.
Informational notes do not have a status, since we consider them optional recommendations.

Note, that audits are an important step to improve the security of smart contracts and can find
many issues. However, auditing complex codebases has its limits and a remaining risk is
present (see disclaimer).

Users of the system should exercise caution. In order to help with the evaluation of the
remaining risk, we provide a measure of the following key indicators: code complexity, code
readability, level of documentation, and test coverage. We include a table with these criteria
below.

Note, that high complexity or low test coverage does not necessarily equate to a higher risk,
although certain bugs are more easily detected in unit testing than a security audit and vice
versa.

7



Summary of Findings

No Description Severity Status

1 Transferable reward tokens may block token owner
from unstaking and claiming rewards

Critical Resolved

2 Rewards are lost if user does not claim them during
unstake

Critical Resolved

3 Partial reward calculation in staking contract leads
to loss of rewards

Critical Resolved

4 Users can steal all rewards from the staking
contract with very little cost

Critical Resolved

5 Reward distribution in staking contract may run out
of gas and be blocked forever

Major Resolved

6 User reward query of staking contract returns
wrong pending reward amount

Major Resolved

7 Native tokens support is partially implemented,
which could cause inconsistent state and failures

Minor Resolved

8 Treating LUNA as a special case for tax calculation
may lead to problems with Terra protocol updates

Minor Resolved

9 The owner key being comprised would result in
funds locked forever

Minor Resolved

10 Canonical address transformations are inefficient Informational Resolved

11 Storing unused data is inefficient Informational Resolved

12 Storing duplicated data is inefficient Informational Resolved

13 Use of magic numbers can be error-prone Informational Resolved

14 Overflow checks not enabled for release profile in
contracts/loopswap_staking/Cargo.toml

Informational Resolved

8



Code Quality Criteria

Criteria Status Comment

Code complexity Medium -

Code readability and clarity Medium We recommend using more
idiomatic Rust, such as
unwrap_or_default instead of
defining state variables for
unwrapping values. The codebase
contains many typos and several
comments that are contradicting the
implementation.

Level of Documentation Medium -

Test Coverage Low-Medium The codebase exhibits only sparse
unit tests and a lack of integration
tests.

9



Detailed Findings
1. Transferable reward tokens may block token owner from

unstaking and claiming rewards

Severity: Critical

The current architecture of the staking contract emits reward tokens (uLS), which are fungible
and transferable. However, in
contracts/loopswap_staking/src/contract.rs:332, there is a check that verifies
whether the sent token amount is equal to the original amount minted by the sending user. If
the current owner of the tokens was not the minter, the check would fail, preventing the user
from unstaking and claiming rewards. Additionally, the condition for the user staked time in
line 314 will fail if the current owner has not staked tokens before.

Consequently, the current architecture implies that tokens are not fully fungible.

Recommendation

If the intention is to prevent users from transferring reward tokens, we recommend not
minting and sending reward tokens, and re-architect the logic to keep track of user balances
with a map of accounts in storage. Otherwise, if the intention is that reward tokens should be
fungible, we recommend removing any restrictions on fungibility. That implies removing
storage of balances and staked tokens as well as time locks on a per user basis. Time locks
could be tracked in the token contract itself, where any transfer of tokens could reset the time
a user has held tokens.

Status: Resolved

2. Rewards are lost if user does not claim them during unstake

Severity: Critical

If the execute_unstake_and_claim function of the staking contract is called with
is_reward_claimed = false, the user’s stake and the total rewards will be reduced
independent of a user claiming the rewards or not in
contracts/loopswap_staking/src/contract.rs:417 and 421, which implies that
the user can never again retrieve the reward. Additionally, no one else will ever be able to
retrieve the reward, so it will be lost.

10



Recommendation

We recommend either always sending rewards to users, storing them as pending rewards, or
distributing them to other users or a dedicated account.

Status: Resolved

3. Partial reward calculation in staking contract leads to loss of
rewards

Severity: Critical

When unstaking from the staking contract, the rewards earned until the current block time are
calculated in contracts/loopswap_staking/src/contract.rs:412 using the
amount unstaked, not the total amount staked. Whenever the amount unstaked is less than
the total amount staked, the user will lose the rewards on the difference. Those lost tokens
are locked forever in the contract.

Recommendation

We recommend using the total amount staked for the reward calculation.

Status: Resolved

4. Users can steal all rewards from the staking contract with very
little cost

Severity: Critical

If a user stakes tokens in the staking contract, and then unstakes a part of those without
claiming rewards, the user’s USER_REWARD_INFO storage map entry will be deleted in
contracts/loopswap_staking/src/contract.rs:439. The user can then unstake
again with claiming rewards. Now the user will get an empty RewardInfo, which means that
the user can claim a proportion of the reward independent of the duration the user has
staked, sinche the user’s reward_index will be zero.

Recommendation

We recommend setting the reward_index in line 402 to the current_reward_index.

Status: Resolved

11



5. Reward distribution in staking contract may run out of gas and be
blocked forever

Severity: Major

In contracts/loopswap_staking/src/contract.rs:459, a loop is used to process
daily reward distribution with one iteration per day. Depending on how many days have not
had rewards distributed, this loop could run out of gas, with no mechanism to recover.

Recommendation

We recommend removing the loop and instead simply calculating the amount of passed days,
and then distributing the full amount at once.

Status: Resolved

6. User reward query of staking contract returns wrong pending
reward amount

Severity: Major

The staking contract’s query_user_reward function returns the user’s share of the
currently unclaimed rewards, but does not consider historic staking/unstaking. That is caused
by the fact that the query does not take the user’s reward_index into account.

Recommendation

We recommend considering the user’s reward_index when calculating a user’s pending
rewards.

Status: Resolved

7. Native tokens support is partially implemented, which could
cause inconsistent state and failures

Severity: Minor

In multiple places in the codebase, the Asset are AssetInfo types are used, which
indicates that native tokens may be supported. Support for native tokens is not handled
properly though, which would lead to issues. There is also no error returned in most cases, so
a call will not revert, but rather lead to an inconsistent state. Instances are:

- If a native token was supported as stakeable, unstaking a native token would lead to
no state updates and no return of the staked tokens to the user, and the liquidity/LS
token would be kept in the contract due to the condition in line
contracts/loopswap_staking/src/contract.rs:325.

12



- Native staked tokens would be skipped during reward distribution due to the
condition in line 461.

- Claiming reward tokens would fail due to the CW20 transfer in line 432.

This issue is classified as minor since it does not pose a problem currently since native tokens
cannot be sent to the contract. The only way to stake is through a CW20 receive message at
the moment, see line 84. Still, the admin could already set a native token as a stakeable and a
distribution token, causing the issues described above.

Recommendation

We recommend either adding support for native tokens, or replacing the Asset and
AssetInfo with a simple Addr to only support CW20 tokens (and a Uint128 type if an
amount is needed) in the contract.

Status: Resolved

8. Treating LUNA as a special case for tax calculation may lead to
problems with Terra protocol updates

Severity: Minor

In packages/loopswap/src/asset.rs:35, LUNA is treated as a special case for tax
calculations with a hard-coded zero tax. However, this might lead to inconsistencies if Terra
changes the LUNA tax policy in a future protocol update. In such a case, the contract would
pay the tax, leading to liquidity being used in the case of the pair contracts or operations
failing in the router contract.

Recommendation

We recommend treating LUNA the same as other native tokens and querying the tax rate
from Terra.

Status: Resolved

9. The owner key being comprised may result in funds locked
forever

Severity: Minor

In contracts/loopswap_staking/src/contract.rs:306, the contracts check if
they are in a freeze state. If that’s the case, any unstake and claim actions are blocked. In
the case that the owner key is lost or compromised, the funds in the contract would be locked
forever.

13



Recommendation

We recommend using a time-lock instead of a freeze and ensuring that the owner key is
properly protected, e. g. by using a multi-sig.

Status: Resolved

10.Canonical address transformations are inefficient

Severity: Informational

While previously recommended as a best practice, usage of canonical addresses for storage
is no longer encouraged. The background is that canonical addresses are no longer stored in
a canonical format, so the transformation just adds overhead without much benefit.
Additionally, the codebase is more complicated with address transformations.

Recommendation

We recommend removing any transformation from human to canonical addresses and using
the new Addr type for validated addresses instead.

Status: Resolved

11. Storing unused data is inefficient

Severity: Informational

The contract_addr field of the StakeableInfoRaw struct in
packages/loopswap/src/asset.rs:329 does not need to be stored, it can instead be
queried within the contract using env.contract.address. Storing unused data increases
gas consumption and reduces maintainability.

Recommendation

We recommend removing unused stored data.

Status: Resolved

12.Storing duplicated data is inefficient

Severity: Informational

The token field of the staking contract’s Config struct in
contracts/loopswap_staking/src/state.rs:12 contains the address of the
stakeable LP token. That same address is redundantly stored in the StakeableInfoRaw

14



struct in the asset_infos field of the STAKEABLE_INFO storage item. Storing duplicated
data increases gas consumption and reduces maintainability.

Recommendation

We recommend removing duplicated stored data.

Status: Resolved

13.Use of magic numbers can be error-prone

Severity: Informational

In several places of the codebase such as in
contracts/loopswap_staking/src/contract.rs:269, 412, 452, 475, 477, 487,
577, and 578, magic numbers are used, which can be error-prone and decrease
maintainability.

Recommendation

We recommend defining constants and replacing the use of magic numbers by them, to
produce more reliable code.

Status: Resolved

14.Overflow checks not enabled for release profile in
contracts/loopswap_staking/Cargo.toml

Severity: Informational

While set in other packages, contracts/loopswap_staking/Cargo.toml does not
enable overflow-checks for the release profile.

We only classify this issue as informational since overflow checks are implicitly enabled
through the workspace Cargo.toml.

Recommendation

We recommend enabling overflow checks in every package, even if no calculations are
currently performed in those packages. That prevents unintended consequences when
features are added in the future or when the project is refactored.

Status: Resolved

15


